高等数学(上册)第二章:导数与微分
导数的概念
定义
特定点的导数表达式
$$
f^{\prime}\left(x_{0}\right)=\lim {h \rightarrow 0} \frac{f\left(x{0}+h\right)-f\left(x_{0}\right)}{h}
$$
以及
$$
f^{\prime}\left(x_{0}\right)=\lim {x \rightarrow x{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$
定义式
$$
\begin{aligned}
&y^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}\
&f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$
左导数与右导数
$$
\begin{aligned}
&f^{\prime}\left(x_{0}\right)=\lim {h \rightarrow 0^{-}} \frac{f\left(x{0}+h\right)-f\left(x_{0}\right)}{h}\
&f^{\prime}{+}\left(x{0}\right)=\lim {h \rightarrow 0^{+}} \frac{f\left(x{0}+h\right)-f\left(x_{0}\right)}{h}
\end{aligned}
$$
导数的几何意义
则在该切点的切线方程为:
$$
y-y_0=f\prime(x)(x-x_0)
$$
而过其切点$M(x_0,y_0)$且与切线垂直的直线叫做曲线$y=f(x)$在点$M$处的法线,则该法线方程为
$$
y-y_{0}=-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right)
$$
其中$f\prime(x_0)\neq 0$
函数的求导法则
函数的和,差,商,积的求导法则
式2的证明:
$$
\begin{aligned}
(u(x) v(x))^{\prime}
&=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x) v(x+\Delta x)-u(x) v(x)}{\Delta x}\
&=\lim _{\Delta x \rightarrow 0}\left[\frac{u(x+\Delta x)-u(x)}{\Delta x} \cdot v(x+\Delta x)+u(x) \cdot \frac{v(x+\Delta x)-v(x)}{\Delta x}\right]\
&=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x)-u(x)}{\Delta x} \cdot \lim _{\Delta x \rightarrow 0} v(x+\Delta x)+u(x) \cdot \lim _{\Delta x \rightarrow 0} \frac{v(x+\Delta x)-v(x)}{\Delta x}\
&=u^{\prime}(x) v(x)+u(x) v^{\prime}(x)
\end{aligned}
$$
式3的证明
$$
\begin{aligned}
\left[\frac{u(x)}{v(x)}\right]^{\prime} &=\lim _{\Delta x \rightarrow 0} \frac{\frac{u(x+\Delta x)}{v(x+\Delta x)}-\frac{u(x)}{v(x)}}{\Delta x} \
&=\lim _{\Delta x \rightarrow 0} \frac{u(x+\Delta x) v(x)-u(x) v(x+\Delta x)}{v(x+\Delta x) v(x) \Delta x} \
&=\lim _{\Delta x \rightarrow 0} \frac{[u(x+\Delta x)-u(x)] v(x)-u(x)[v(x+\Delta x)-v(x)}{v(x+\Delta x) v(x) \Delta x} \
&=\lim _{\Delta x \rightarrow 0} \frac{\frac{u(x+\Delta x)-u(x)}{\Delta x} v(x)-u(x) \frac{v(x+\Delta x)-v(x)}{\Delta x}}{v(x+\Delta x) v(x)}\
&=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{v^{2}(x)} \
&=\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{v^{2}(x)}(v(x) \neq 0)
\end{aligned}
$$
反函数的求导法则
简单来说,反函数的导数等于直接函数导数的倒数。
复合函数求导法则
基本求导法则与导数公式
高阶导数
$y=f(x)$的导数$f\prime(x)$叫做$y=f(x)$的一阶导数。
$$
y^{\prime \prime \prime}, y^{(4)}, \cdots, y^{(n)}\
\frac{d^{3} y}{d x^{3}}, \frac{d^{4} y}{d x^{4}}, \cdots, \frac{d^{n} y}{d x^{n}}
$$
$\ln(1+x)$的$n$阶导数
$$
[\ln (1+x)]^{(n)}=(-1)^{n-1} \frac{(n-1) !}{(1+x)^{n}}
$$
$u(x) \cdot v(x)$的$n$阶导数
$$
(u v)^{\prime}=u^{\prime} v+u v^{\prime} \
(u v)^{\prime \prime}=
u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}\
(u v)^{m}=u^{m} v+3 u^{\prime \prime} v^{\prime}+3 u^{\prime} v^{\prime \prime}+u v^{\prime \prime \prime}
$$
用数学归纳法证明
$$
\begin{aligned}
(u v)^{(n)}=& u^{(n)} v+n u^{(n-1)} v^{\prime}+\frac{n(n-1)}{2 !} u^{(n-2)} v^{\prime \prime}+\cdots+\
& \frac{n(n-1) \cdots(n-k+1)}{k !} u^{(n-k)} v^{(k)}+\cdots+u v^{(n)}
\end{aligned}
$$
即
$$
(u v)^{(n)}=\sum_{k=0}^{n} C_{n}^{k} u^{(n-k)} v^{(k)}
$$
隐函数相关
例,
求$y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}$的导数。
先对两边取对数
$$
\ln y=\frac{1}{2}[\ln (x-1)+\ln (x-2)-\ln (x-3)-\ln (x-4)]
$$$$
y^{\prime}=\frac{y}{2}\left(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}\right)
$$
由参数方程确定的函数的导数
在上式中如果函数$x=\varphi(t)$具有单调连续反函数$t=\varphi^{-1}(x)$,且反函数能与函数$y=\psi(t)$构成复合函数,那么参数返程(4-3)所确定的函数可以堪成事有函数$y=\psi(t), t=\varphi^{-1}(x)$复合而成的函数$y=\psi\left[\varphi^{-1}(x)\right]$.假定函数$x=\varphi(t), y=\psi(t)$都可导,而且$\varphi^{\prime}(t) \neq 0$。于是根据复合函数的求导法则与反函数的求导法则有:
$$
\frac { \mathrm { d } y } { \mathrm { d } x } = \frac { \mathrm { d } y } { \mathrm { d } t } \cdot \frac { \mathrm { d } t } { \mathrm { d } x } = \frac { \mathrm { d } y } { \mathrm { d } t } \cdot \frac { 1 } { \frac { \mathrm { d } x } { \mathrm { d } t } } = \frac { \psi ^ { \prime } ( t ) } { \varphi ^ { \prime } ( t ) }
$$
即
$$
\frac{d y}{d x}=\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)}
$$
上式也可以写成
$$
\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{d} t}}{\frac{\mathrm{d} x}{\mathrm{d} t}}
$$
如果$x=\varphi(t), y=\psi(t)$二阶可导,那么又可得到函数的二阶导数公式
$$
\begin{aligned}
\frac{\mathrm{d}^{2} y}{\mathrm{d} x^{2}} &=\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{\mathrm{d} y}{\mathrm{d} x}\right)=\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\psi^{\prime}(t)}{\varphi^{\prime}(t)}\right) \cdot \frac{\mathrm{d} t}{\mathrm{d} x} \
&=\frac{\psi^{\prime \prime}(t) \varphi^{\prime}(t)-\psi^{\prime}(t) \varphi^{\prime \prime}(t)}{\varphi^{\prime 2}(t)} \cdot \frac{1}{\varphi^{\prime}(t)} \
&= \frac{\psi^{\prime \prime}(t) \varphi^{\prime}(t)-\psi^{\prime}(t) \varphi^{\prime \prime}(t)}{\varphi^{\prime 3}(t)}
\end{aligned}
$$
函数的微分
微分的定义
函数$f(x)$在点$x_0$可微的充分必要条件是函数$f(x)$在点$x_0$处可导,且当$f(x)$在点$x_0$可微时,其微分一定是
$$
\mathrm{d} y=f^{\prime}\left(x_{0}\right) \Delta x
$$
当$f\prime(x_0)\neq 0$有
$$
\lim {\Delta x \rightarrow 0} \frac{\Delta y}{\mathrm{d} y}=\lim {\Delta x \rightarrow 0} \frac{\Delta y}{f^{\prime}\left(x{0}\right) \Delta x}=\frac{1}{f^{\prime}\left(x{0}\right)} \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=1
$$
结论:
在$f\prime(x_0)\neq 0$的条件下,以微分$\rm d y=f\prime(x_0)\Delta$近似替代增量$\Delta y=f(x_0+\Delta x)-f(x_0)$其误差为$o(\mathrm{d} y)$.因此,在$|\Delta x|$很小时,有近似等式
$$
\Delta y\approx\rm dy
$$
基本初等函数的微分公式与微分运算法则
首先,函数微分的表达式
$$
\mathrm{d} y=f^{\prime}(x) \mathrm{d} x
$$